Binding of nucleotides to nucleoside diphosphate kinase: a calorimetric study.
نویسندگان
چکیده
The source of affinity for substrates of human nucleoside diphosphate (NDP) kinases is particularly important in that its knowledge could be used to design more effective antiviral nucleoside drugs (e.g., AZT). We carried out a microcalorimetric study of the binding of enzymes from two organisms to various nucleotides. Isothermal titration calorimetry has been used to characterize the binding in terms of Delta G degrees, Delta H degrees and Delta S degrees. Thermodynamic parameters of the interaction of ADP with the hexameric NDP kinase from Dictyostelium discoideum and with the tetrameric enzyme from Myxococcus xanthus, at 20 degrees C, were similar and, in both cases, binding was enthalpy-driven. The interactions of ADP, 2'deoxyADP, GDP, and IDP with the eukaryotic enzyme differed in enthalpic and entropic terms, whereas the Delta G degrees values obtained were similar due to enthalpy--entropy compensation. The binding of the enzyme to nonphysiological nucleotides, such as AMP--PNP, 3'deoxyADP, and 3'-deoxy-3'-amino-ADP, appears to differ in several respects. Crystallography of the protein bound to 3'-deoxy-3'-amino-ADP showed that the drug was in a distorted position, and was unable to interact correctly with active site side chains. The interaction of pyrimidine nucleoside diphosphates with the hexameric enzyme is characterized by a lower affinity than that with purine nucleotides. Titration showed the stoichiometry of the interaction to be abnormal, with 9--12 binding sites/hexamer. The presence of supplementary binding sites might have physiological implications.
منابع مشابه
ATP-dependent activation of the atrial acetylcholine-induced K+ channel does not require nucleoside diphosphate kinase activity.
Prior reports by others have shown that cytoplasmically applied ATP can activate the acetylcholine-induced K+ channel in inside-out atrial membrane patches when no guanine nucleotides are present in the solution bathing the cytosolic face of the membrane. A nucleoside diphosphate kinase mechanism was proposed to explain the activation by ATP. We show in the present study that cytoplasmic adenyl...
متن کاملBinding of nucleotides to guanylate kinase, p21(ras), and nucleoside-diphosphate kinase studied by nano-electrospray mass spectrometry.
The binding of nucleotides to three different nucleotide-binding proteins and to a control protein was studied by means of nano-electrospray mass spectrometry applied to aqueous nondenaturing solutions. The method leads to unambiguous identification of enzyme complexes with substrates and products but does not allow the determination of dissociation constants or even stoichiometries relevant to...
متن کاملNucleoside diphosphate kinase and the activation of antiviral phosphonate analogs of nucleotides: binding mode and phosphorylation of tenofovir derivatives.
Tenofovir is an acyclic phosphonate analog of deoxyadenylate used in AIDS and hepatitis B therapy. We find that tenofovir diphosphate, its active form, can be produced by human nucleoside diphosphate kinase (NDPK), but with low efficiency, and that creatine kinase is significantly more active. The 1.65 A x-ray structure of NDPK in complex with tenofovir mono- and diphosphate shows that the anal...
متن کاملMetabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture.
1. Pig aortic endothelial and smooth-muscle cells in culture rapidly catabolize exogenous ATP, ADP or AMP. 2. In both cell types catabolism is due to Mg2+-stimulated ectoenzymes. 3. Inhibition and substrate-specificity studies suggest that both cell types possess three distinct ectonucleotidases, namely nucleoside triphosphatase (EC 3.6.1.15), nucleoside diphosphatase (EC 3.6.1.6) and 5'-nucleo...
متن کاملSubcellular compartmentation of uridine nucleotides and nucleoside-5' -diphosphate kinase in leaves.
The subcellular compartmentation of nucleoside diphosphate kinase (EC 2.7.4.6) and the uridine nucleotides has been studied in leaves. Membrane filtration of barley (Hordeum vulgare L.) leaf mesophyll protoplasts and differential centrifugation of spinach (Spinacia oleracea L.) leaf extracts showed that about half the nucleoside diphosphate kinase is present in the cytosol. The activity is adeq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 40 15 شماره
صفحات -
تاریخ انتشار 2001